

2-Weeks Online Live

FDP | Internship Training | Industrial Training

on

Al Deep Learning, Computer Vision, NLP & Chat GPT)

Training Duration:

Duration	Training Hours per day	Total Training Hours
2-Weeks	3-hours (Mon-Friday)	30 Hours

Training Highlights:

5+ AI Projects will be covered during the training.

Total 30+ Hours (2-weeks)

online Live Training.

Training includes: Assignments, Projects with Code, Training PPT's & Recording.

The **certificate of completion** will be provided to each participant by Eduxlabs in asscoaition with Mechanica IIT Madras

Certifications:

We offer following type of training certificates

- 2 Weeks Training Completion Certificate from Eduxlabs in association with Mechanica IIT-M
- 2 Weeks **FDP** Certificate of Completion from Eduxlabs association with Mechanica IIT-M
- 2 Weeks Industrial Certificate of Completion from Eduxlabs association with Mechanica IIT-M
- 2 Weeks Internship Completion Letter from Eduxlabs (Only for Internship Participants)

2 -WEEKS TRAINING PROGRAM:

2-WEEKS	Module	Hours
1 ST WEEK	 Machine Learning Advance Recommendation Systems Deep Learning Foundation Deep Learning Advanced 	15-HRS
2 ND - WEEK	 Computer Vision Natural language processing (NLP) Chat Bots Time Series 	15-HRS

2-WEEKS - TRAINING PROJECTS COVERED

2-weeks DEEP LEARNING PROJECTS	Project 1: Bike Sharing Predication of bike rental count hourly or daily based on the environmental and seasonal settings. Project 2: Time Series Forecasting (LSTM) and Prediction Curve-Global Project 3: ECG Heart Beat Analysis, Visualization and Heart Beat Classification using ANN Classification Project 4: Classification of Devanagari Handwritten Characters Classify handwritten Devanagari characters using Neural Network.
COMPUTER VISION PROJECTS + DEEP LEARNING PROJECTS	Project 1: Face and Eye Detection – Using Haar Cascade and Cascade Classifier Project 2: Face Recognition using Computer Vision and Deep Learning Project 3: Time Series on Flights Passengers Forecasting.
NLP PROJECT + CHABOT PROJECT	Project 1: Amazon Product Reviews Sentiment Analysis Project 2: Zomato Restaurant Reviews Sentiment Analysis using LSTM Algorithm Project 3: Conventional Chatbot using Open AI, GPT. (Built your ChatBot with OpenAI GPT3)

2-WEEKS COURSE CONTENT ON

AI & Deep Learning, Computer Vison, NLP & Chabot

2-Weeks	MODULES
1st – Week: MACHINE LEARNING INTERMEDIATE Naïve Bayes Classifier Support vector machines Time series Forecasting	Module 1: Naïve Bayes Classifier Bayesian Classification How Naive Bayes algorithm works? Naive Bayes Application — Binary Class & Multi-Class Classification Gaussian Naive Bayes Multinomial Naive Bayes Module 2: CLUSTERING — K-MEANS and Hierarchical Unsupervised Learning Clustering Introduction K-Means Clustering Handling K-Means Clustering Maths behind KMeans Clustering — Centroids Mean shift Introduction Elbow Method — Picking K in K-Means Hierarchical Clustering Types — Agglomerative and Divisive Dendrogram Module 3: Support vector machines (S V M) Concept and Working Principle Mathematical Modelling Linear Support Vector Machine Hyperplanes Optimal separating hyperplane Drawing Margins Optimization Function Formation The Kernel Method and Nonlinear Hyperplanes
MACHINE LEARNING ADVANCE	 Module 1: Time series Forecasting Time Series - Introduction Techniques and applications Components of Time Series Forecasting Moving average, Smoothing ARIMA Model Seasonality in Time Series Prophet Model Module 2: Recommendation System Association Rule Learning

- Components of Apriori algorithm: Support, Confidence, Lift
- Market Basket Analysis
- Collaborative Filtering

Module 3. Advanced Ensemble Learning

- Random Forest
- Bagging
- Boosting
- Adaboost
- XGboost

Artificial Intelligence Foundation

Artificial Neural Networks Convolution al Neural Networks

Recurrent Neural Networks Recommend ation System

Module 1: Artificial Neural Networks

- MP Neuron
- Perceptron
- Logic gates
- ANN & Working
- Single Layer Perceptron Model
- Multilayer Neural Network
- Feed Forward Neural Network
- Cost Function Formation
- Activation Function
- Cost Function
- Applying Gradient Descent Algorithm
- Stochastic Gradient Descent
- XOR Logic using MLP

Module 2: TensorFlow

- TensorFlow library for AI
- Keras High Level TensorFlow API
- Getting started with TensorFlow
- Installation & Setting up TensorFlow
- TensorFlow Data Structures
- Tensor board Visualization

Module 3: Regression with ANN

- Learning Algorithm
- Linear Regression Theory
- Feature selection Correlation
- Input Matrix & Output Labels
- Activation Function
- Training A single perceptron
- Model Optimizers Parameters and Hyperparameters
- Multiple Linear Regression

Module 4: Classification with ANN

- Logistic Regression Theory
- Classification Problems
- Training the model
- Binary Class and Multi-Class Classification
- Hypothesis, Parameters & Hyperparameters, Cost Function, Model Optimization – Optimizers
- Activation Function

2nd – Week

Deep Learning

Module 1: CNNs (Convolutional Neural Networks)

- Convolutional Neural Network
- Understanding the architecture and use-cases of CNN
- Pooling Layer
- How to visualize using CNN
- How to fine-tune a convolutional neural network
- What is transfer learning
- Kernel filter, Feature maps, and pooling
- Deploying convolutional neural networks in TensorFlow

Module 2: RNNs (Recurrent Neural Networks)

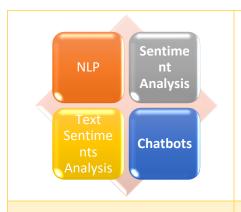
- Introduction to the RNN model
- Modelling sequences
- Unfolded RNN
- Types of RNN & Use Case
- Training RNNs with back propagation
- Backward Propagation
- Problems in Traditional RNN
- Long short-term memory (LSTM)
- Forget Gate, Input Gate, Output Gate

COMPUTER VISION

Module 1: Introduction to OpenCV

- Introduction to OpenCV
- Image Processing
- Working & implementation with Image
- Edge Detection & smoothing of image
- Working with resolution
- Colour filtering on Image
- Image Contour
- Feature Extraction
- Reading Video using Computer Vision
- Implementation of color filter on video
- Modifying Video resolution
- OpenCV gradients

Module 2: Cascade Classifier and HaarCascade


- Cascade Classifiers
- Haar Cascades
- Detect Multiscale
- Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade

NLP-I

Module 1: Introduction to NLP & Word Vectors

- NLP
- NLTK Package
- Tokenization
- Lemmatization and Stemming
- Stop Words
- Regex

- Bag-of-Words
- TF-IDF

Module 2: NLP - Sentiment Analysis

- NLP Text Analysis
- Frequency Distribution
- Text Sentiments Analysis

Chatbots and OpenAl

Module 1: Chatbots

- Chatbot Introduction
- Chatbot Flow and Architecture
- OpenAl Introduction
- GPT3
- Built your ChatBot with OpenAI GPT3

Participant Eligibility & Prerequisite:

- The program is open to the Faculty/ Research Scholars/ Students of science & Engineering institutes and working IT professionals are also, eligible.
- prerequisites: Basic knowledge of python programming

EduxLabs Team

(Esoir Business Solutions Gurugram)

M: +91-7053133032 | 8318635606

Email info@eduxlabs.com www.eduxlabs.com