

4-WEEKS ONLINE LIVE

FDP | Internship Training | Industrial Training on

AI, MACHINE LEARNING, DEEP LEARNING, COMPUTER VISION, NLP & CHAT GPT

Training Duration:

Duration	Training Hours per day	Total Training Hours
4-Weeks	3-hours (Mon-Friday)	60 Hours
2-Weeks	3-hours (Mon-Friday)	30 Hours

Training Highlights:

14+ AI Projects will be covered during the training.

Total 60+ Hours (4-weeks)

online Live Training.

Training includes: Assignments, Projects with Code, Training PPT's & Recording.

The **certificate of completion** will be provided to each participant by Eduxlabs in association with Mechanica IIT Madras

Register Now

CERTIFICATIONS:

We offer following type of training certificates

- 2/4 Weeks Training Completion Certificate from Eduxlabs in association with Mechanica IIT-M
- 2/4 Weeks FDP Certificate of Completion from Eduxlabs association with Mechanica IIT-M
- 2/4 Weeks Industrial Certificate of Completion from Eduxlabs association with Mechanica IIT-M
- 4/6 Weeks Internship Completion Letter from Eduxlabs (Only for Internship Participants)

2 / 4-WEEKS TRAINING PROGRAM:

4-WEEKS	MODULE	Hours
1 st -WEEK	 Python Programming from scratch Data Processing using Python Data Science fundamental 	15-HRS
2 ND -WEEK	 Data Analysis using Python Data Visualisation using Python Machine Learning Foundation 	15-HRS
3 RD - WEEK	 Machine Learning Intermediate Machine Learning Advance Deep Learning Foundation Deep Learning Advanced 	15-HRS
4 TH - WEEK	 Computer Vision Natural language processing (NLP) Chat Bots Time Series Recommendation Systems 	15-HRS

4-WEEKS TRAINING PROJECTS (13+)

MACHINE LEARNING PROJECTS	Project 1: House price prediction using Linear Regression Project 2: Diabetics prediction Project 3: Customer churn prediction using Decision tree & Random Forest
ARTIFICIAL INTELLIGENCE + DEEP LEARNING PROJECTS	Project 1: Bike Sharing Predication of bike rental count hourly or daily based on the environmental and seasonal settings. Project 2: Time Series Forecasting (LSTM) and Prediction Curve-Global Project 3: ECG Heart Beat Analysis, Visualization and Heart Beat Classification using ANN Classification Project 4: Classification of Devanagari Handwritten Characters Classify handwritten Devanagari characters using Neural Network.
COMPUTER VISION PROJECTS + DEEP LEARNING PROJECTS	Project 1: Face and Eye Detection – Using Haar Cascade and Cascade Classifier Project 2: Face Recognition using Computer Vision and Deep Learning Project 3: Time Series on Flights Passengers Forecasting. Project 4: Product Recommendation System
NLP PROJECT # CHABOT PROJECT	Project 1: Amazon Product Reviews Sentiment Analysis Project 2: Zomato Restaurant Reviews Sentiment Analysis using LSTM Algorithm Project 3: Conventional Chatbot using Open AI, GPT. (Built your ChatBot with OpenAI GPT3)

4-WEEKS COURSE CONTENT ON

AI & Machine Learning, Deep Learning, Computer Vision, NLP & Chabot

4-Weeks	MODULES
1 st – Week	Module 1: Data Science Fundamentals
Python Python Python Pandas Matplotlib Seaborn	 Introduction to Data Science Introduction to Machine Learning Artificial Intelligence vs Machine Learning Benefits of Machine Learning w.r.t. traditional methodologies Deep Learning - Introduction How DL is different from all other Machine Learning methods Supervised and Unsupervised learning Reinforcement Learning Al Training & testing flow Classification and Regression in Supervised Learning Clustering and Association in Unsupervised Learning Types of Algorithms Data Science Flow & Essentials Module 2: Python Fundamentals [CORE] Overview of Python- Starting with Python
	 Python data types: Primitive Core built-in data structures – Lists, Tuples, Dictionaries String, String built-in methods Data manipulation tools (Operators, Functions, Packages, control structures, Loops, arrays etc) Loops and Conditional statements Python UDFs – def keywords Reading and writing files
	 Module 3: Data Manipulation With PANDAS Concept of Packages/Libraries - Important packages (NumPy, SciPy, Pandas) Importing Data from various sources (CSV, txt, excel, access etc) Exporting Data to various formats Data Manipulation steps (Sorting, filtering, duplicates, merging, appending, sub setting, derived variables, sampling, Data type conversions, renaming, formatting etc) Scaling and Normalizing data Pre-processing and Feature Selection.
Data Visualization & EDA	Module 1: Data Visualization Seaborn Matplotlib

- Time series Plot of Covid19 Data
- Coronavirus 2019-20 Visualization on World Map

Module 2: IMPLEMENTATION OF STATS METHODS

- Basic Statistics Measures of Central Tendencies and Variance
- Building blocks Probability Distributions Normal distribution
- Central Tendency, Standard Deviation
- Quartiles, IQR, Boxplot, Outliers
- Skewness, Kurtosis

2nd – Week

MACHINE LEARNING FOUNDATION REGRESSION

Module 1: LINEAR REGRESSION

- Regression Problem Analysis
- Mathematical modelling of Regression Model
- L1 & L2 Regularization
- Cost Function
- Optimizers Gradient Descent Algorithm
- Parameters & Hyperparameters
- Cost Function & Cost Optimizer: Gradient Descent Algorithm
- R Squared & Adj. Squared
- Univariate Linear Regression Model
- Polynomial Linear Regression
- Multivariate Regression Model
- Model Predictions, Model Accuracy, Graphical Plotting

Module 2: LOGISTIC REGRESSION

- Assumptions
- Logit Transformation
- Hypothesis Sigmoid Equation, Logistic Equation
- Odds Ratio and Interpretation
- Model Specification
- Prediction Probability
- Model Parameter Significance Evaluation
- Model Optimization of threshold value
- Confusion Matrix, Precision, Recall, F1-Score, ROC Curve, Classification report

Module 3: DECISION TREE & RANDOM FOREST ALGORITHM

- Concept and Working Principle
- Mathematical Modelling
- Optimization Function Formation
- Analysis of Classification Problem case
- Math: Role of Entropy, Gini Index and Information Gain in Decision Trees
- Decision Trees ID3
- Overfitting and Pruning
- Plotting Tree
- Random Forest

Module 4: KNN (K- Nearest Neighbours)

- K- Nearest Network Introduction
- How does the KNN algorithm work?
- Methods of calculating distance between points
- Methods to choose the K

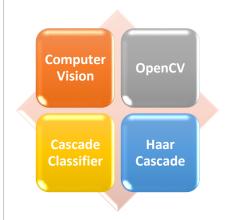
GridSearchCV 3rd - Week: Module 1: Dimensionality Reduction using PCA **MACHINE LEARNING INTERMEDIATE** Module 2: Naïve Bayes Classifier **Bayesian Classification** How Naive Bayes algorithm works? Naive Bayes Application – Binary Class & Multi-Class Classification Naïve Gaussian Naive Bayes K-Means Bayes Multinomial Naive Bayes Clustering Classifier Module 3: CLUSTERING - K-MEANS and Hierarchical **Unsupervised Learning Clustering Introduction** Time series K-Means Clustering **Forecasting** Handling K-Means Clustering Maths behind KMeans Clustering – Centroids Mean shift Introduction Elbow Method – Picking K in K-Means Hierarchical Clustering Types – Agglomerative and Divisive Dendrogram Module 4: Support vector machines (S V M) Concept and Working Principle Mathematical Modelling Linear Support Vector Machine **Hyperplanes** Optimal separating hyperplane **Drawing Margins** Optimization Function Formation The Kernel Method and Nonlinear Hyperplanes **Module 5: Time series Forecasting** Time Series - Introduction Techniques and applications Components of Time Series Forecasting Moving average, Smoothing ARIMA Model Seasonality in Time Series Prophet Model MACHINE LEARNING ADVANCE **Module 1: Recommendation System** Association Rule Learning Components of Apriori algorithm: Support, Confidence, Lift Market Basket Analysis Collaborative Filtering

Module 2. Advanced Ensemble Learning

Random Forest

	 Bagging Boosting Adaboost XGboost
Artificial Neural Networks Recurrent Neural Networks Recommend ation System Artificial Convolution al Neural Networks Recommend ation System	Module 1: Artificial Neural Networks MP Neuron Perceptron Logic gates ANN & Working Single Layer Perceptron Model Multilayer Neural Network Feed Forward Neural Network Cost Function Formation Activation Function Cost Function Applying Gradient Descent Algorithm Stochastic Gradient Descent XOR Logic using MLP Module 2: TensorFlow TensorFlow library for Al Keras — High Level TensorFlow API Getting started with TensorFlow Installation & Settling up TensorFlow TensorFlow Data Structures Tensor board — Visualization Module 3: Regression with ANN Learning Algorithm Linear Regression — Correlation Input Matrix & Output Labels Activation Function Training A single perceptron Model Optimizers - Parameters and Hyperparameters Multiple Linear Regression Module 4: Classification with ANN Logistic Regression — Theory Classification with ANN Training the model Binary Class and Multi-Class Classification Hypothesis, Parameters & Hyperparameters, Cost Function, Model Optimization — Optimizers Activation Function
Deep Learning	 Module 1: CNNs (Convolutional Neural Networks) Convolutional Neural Network Understanding the architecture and use-cases of CNN Pooling Layer How to visualize using CNN

- How to fine-tune a convolutional neural network
- What is transfer learning
- Kernel filter, Feature maps, and pooling
- Deploying convolutional neural networks in TensorFlow


Module 2: RNNs (Recurrent Neural Networks)

- Introduction to the RNN model
- Modelling sequences
- Unfolded RNN
- Types of RNN & Use Case
- Training RNNs with back propagation
- Backward Propagation
- Problems in Traditional RNN
- Long short-term memory (LSTM)
- Forget Gate, Input Gate, Output Gate

Module 3: Recommendation System

- Boltzmann Machine
- Restricted Boltzmann Machine (RBM)
- Unsupervised Learning
- Collaborative Filtering

COMPUTER VISION

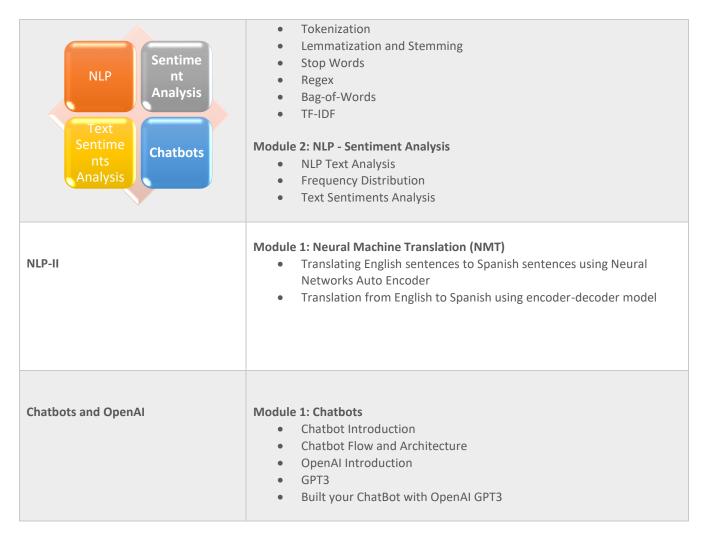
Module 1: Introduction to OpenCV

- Introduction to OpenCV
- Image Processing
- Working & implementation with Image
- Edge Detection & smoothing of image
- Working with resolution
- Colour filtering on Image
- Image Contour
- Feature Extraction
- Reading Video using Computer Vision
- Implementation of color filter on video
- Modifying Video resolution
- OpenCV gradients

Module 2: Cascade Classifier and HaarCascade

- Cascade Classifiers
- Haar Cascades
- Detect Multiscale
- Frontal Face & Eye Detection using CV2 (Computer Vision) and Haar Cascade

Module 3: Computer Vision using CNN


- Image Components
- Collecting Samples and Image Data Preparation (RGB Image)
- ML Model using Open Vision
- Applying Transfer Learning Dense Net

NLP-I

Module 1: Introduction to NLP & Word Vectors

- NLP
- NLTK Package

Participant Eligibility & Prerequisite:

- The program is open to the Faculty/ Research Scholars/ Students of science & Engineering institutes and working IT professionals are also, eligible.
- There are no prerequisites for this training, you will learn AI from scratch.

Training Fee:

2-weeks Training Fee: ₹ 3000/-only 4-weeks Training Fee: ₹ 4999/-only

Register Now: https://www.eduxlabs.com/machinelearning

EduxLabs Team

(Esoir Business Solutions Gurugram) **M:** +91-7053133032 | 8318635606

Email info@eduxlabs.com www.eduxlabs.com